Abstract

IntroductionTheaflavins belong to the class of polyphenols that are predominantly found in black tea. The major derivatives of theaflavins found in black tea are theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3′-gallate (TF2B), and theaflavin-3,3′-digallate (TF3). Theaflavin-3,3′-digallate (TF3) is a natural compound present in black tea and known to possess antiviral activity. This study had attempted to explore the potential role of TF3 in inhibiting various stages of the SARS-CoV-2 life cycle.MethodsMolecular docking studies of TF3 along with positive controls was performed on eight different targets of SARS-CoV-2 followed by binding free energy (MM-GBSA) calculations. The docked complexes with favourable docking and binding free energy results were subjected to molecular dynamics (MD) simulation studies to assess the stability of the dock complex. Finally, TF3 and all the positive controls were taken for ADMET analysis.ResultsThe docking and binding free energy results of TF3 was compared against the positive controls. TF3 showed the highest binding energy against all the targets and formed more stable interactions for a longer duration on MD simulations with CLpro, RdRp, helicase and spike protein. Also, the promising in-silico ADMET profile further warrants the exploration of this compound through in-vitro and in-vivo methods.ConclusionThrough this study, we tried to evaluate the role of theaflavin-3,3’-digallate on multiple targets of SARS-CoV-2, and the positive in-silico results which were obtained on various pharmacodynamic and pharmacokinetic parameters, give a ray of hope as a potential therapeutic drug to this rapidly spreading disease. The search for a curative therapy for SARS-CoV-2 is still ongoing. The favourable preliminary results of TF3 through in-silico analysis offers a ray of hope in ending this devasting pandemic.Supplementary InformationThe online version contains supplementary material available at 10.1007/s42250-022-00376-7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.