Abstract

The molecular mechanism of short-sleep conditions on cognition remains largely unknown. This research aimed to investigate associations between short sleep, inflammatory biomarkers and cognitive function in the US population (NHANES data 2011-2014) and explore cellular mechanisms in mice. Systemic immune-inflammation index (SII) was calculated using blood-cell based biomarkers. Further, we employed integrated bioinformatics and single-cell transcriptomics (GSE137665) to examine how short sleep exposure influenced the molecular pathways associated with inflammation in the brain. To explore the signaling pathways and biological processes of sleep deprivation, we carried out enrichment analyses utilizing the GO and KEGG databases. Population results showed that, compared with normal sleep group, severe short sleep was associated with lower cognitive ability in all the four tests. Moreover, a higher SII level was correlated with lower scores of cognitive tests. In mice study, elevated activation of the inflammatory pathway was observed in cell subgroups of neurons within the sleep deprivation and recovery sleep cohorts. Additionally, heightened expression of oxidative stress and integrated stress response pathways was noted in GABAergic neurons during sleep deprivation. This study contributed to the understanding of the influence of short sleep on cognitive function and its cellular mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.