Abstract
Soil salinization has a major impact on crop revenue, which may be counteracted by harnessing the microbiota that the soil itself harbors. This study aimed to explore the application of fungi exudates (Trametes versicolor and Pleurotus sajor caju) on the potential relief of salt stress in the performance of Lens culinaris in two different soils (a silvopastoral agroforestry soil and LUFA 2.2). Three salinity levels (8, 16, and 26 mS·cm−1) and three levels of each fungal exudate (1%, 6%, and 12%) were evaluated in a 96-h cross-design experiment. Seed germination was checked daily, and after 96-h, seedling radicle and hypocotyl were measured, along with fresh and dry weights and soil phosphatase activity. The sole application of exudates from neither fungus affected the germination and seedling development of L. culinaris. Salinity alone induced a dose-effect response in all L. culinaris tested endpoints, as expected because conductivities above 8 mS·cm−1 are known to be detrimental for many crop species. Application of exudates to salinized soils improved germination rates at 16 and 26 mS·cm−1 compared to the single respective salinity treatment alone, but mainly in assays carried out in natural soil. In addition, under the same conditions (26 mS·cm−1 and all fungi %), there was an improvement in natural soil acid phosphatase activity. The application of rot fungi exudates demonstrates potential in what might prove to be a sustainable measure to reclaim salinized soils and improve crop productivity, which is consistent with current soil protection policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.