Abstract
Non-ischemic dilated cardiomyopathy (DCM) is one of the most frequent pathologies requiring cardiac transplants. Even though the etiology of this disease is complex, frameshift mutations in the giant sarcomeric protein Titin could explain up to 25% of the familial and 18% of the sporadic cases of DCM. Many studies have shown the potential of genome editing using CRISPR/Cas9 to correct truncating mutations in sarcomeric proteins and have established the grounds for myoediting. However, these therapies are still in an immature state, with only few studies showing an efficient treatment of cardiac diseases. This publication hypothesizes that the Titin (TTN)-specific gene structure allows the application of myoediting approaches in a broad range of locations to reframe TTNtvvariants and to treat DCM patients. Additionally, to pave the way for the generation of efficient myoediting approaches for DCM, we screened and selected promising target locations in TTN. We conceptually explored the deletion of symmetric exons as a therapeutic approach to restore TTN’s reading frame in cases of frameshift mutations. We identified a set of 94 potential candidate exons of TTN that we consider particularly suitable for this therapeutic deletion. With this study, we aim to contribute to the development of new therapies to efficiently treat titinopathies and other diseases caused by mutations in genes encoding proteins with modular structures, e.g., Obscurin.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.