Abstract
This paper investigates the synthesis and characterization of novel counter electrodes (CEs) for dye-sensitized solar cells (DSSCs), focusing on composite polyaniline (PANi) nanofibers integrated with tin selenide (SnSe). Three CEs, namely SnSe, PANi, and their composite, were prepared via facile hydrothermal and cyclic voltammetry methods and compared with a standard platinum (Pt) CE. The efficiencies obtained were 4.20 %, 5.63 %, 8.39 %, and 7.72 % for SnSe, PANi, SnSe/PANi, and Pt CEs, respectively. The improved efficiencies, particularly in the case of the SnSe/PANi composite, were attributed to increased short-circuit density of the composite sample. The materials and devices prepared in this study are characterized using various methods including FESEM, TEM, XRD, Raman and FTIR spectroscopies, EIS, Tafel, OCVD, IPCE and etc to support our proposed CE structure. Our findings demonstrate the promising potential of SnSe/PANi composite CEs in enhancing the performance and affordability of DSSCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.