Abstract

As one type of urban artificial ecosystems, roof greening exhibits carbon source/sink characteristics during their life cycle. The carbon cycle mechanism is complex. The lack of exhaustive carbon performance quantification methods and assessment indicators hinders the promotion and implementation of green roof urban decarboni-zation. Focusing on the quantification of roof greening low-carbon landscape potential, we analyzed the internal carbon cycle mechanism of green roof systems and explored four carbon reduction and sink pathways (P1-P4): biogenic carbon sink, embodied carbon, operational carbon, and bioenergy supply. Based on the dual performance indicators of normalized value of carbon emissions and carbon payback time, we summarized the normalized value measurement method of each pathway. The potential and characteristics of each pathway were quantified by extracting data from the literature. The results showed that the quantified potential values for P1 to P4 were 9.54, -2.26, 2.96 and 0.35 kg CO2·m-2·a-1, respectively, and that the potential values for each pathway were strongly influenced by plant types, climate, and other factors. The imperfect base database and the heterogeneity of assessment scenarios impacted the accuracy of the measurements. The integrated low carbon landscape potential of extensive green roofs was discussed in sub-scenarios, with the 40-year-life cycle integrated carbon reduction ranging from 92.24 to 433.42 kg CO2·m-2 and the carbon payback period ranging from 5 to 14 years. Finally, we summarized the problems in the assessment to facilitate future updates and improvements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call