Abstract

Microgrids are energy systems that can operate independently or in conjunction with the main electricity grid. Their purpose is to link different energy sources, enhance customer participation in energy markets, and improve energy system efficiency and flexibility. However, regulatory, technical, and financial obstacles hinder their deployment. To comprehend the current state of the field, this study utilized citation network analysis (CNA) methodology to examine over 1500 scholarly publications on microgrid research and development (R&D). The study employed modularity-based clustering analysis, which identified seven distinct research clusters, each related to a specific area of study. Cluster 1, focused on control strategies for microgrids, had the highest proportion of publications (23%) and the maximum citation link count (151), while Cluster 4, which examined microgrid stability, had the lowest proportion of papers (10%). On average, each publication within each cluster had four citation links. The citation network of microgrid research was partitioned using cluster analysis, which aided in identifying the main evolutionary paths of each subfield. This allowed for the precise tracing of their evolution, ultimately pinpointing emerging fronts and challenges. The identification of key pathways led to the discovery of significant studies and emerging patterns, highlighting research priorities in the field of microgrids. The study also revealed several research gaps and concerns, such as the need for further investigation into technical and economic feasibility, legislation, and standardization of microgrid technology. Overall, this study provides a comprehensive understanding of the evolution of microgrid research and identifies potential directions for future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call