Abstract
Analytical techniques are in high demand for the determination of organic capping agents on surfaces of metallic nanoparticles (NPs) such as gold (Au) and silver (Ag). In this study, the potential of laser desorption ionisation time-of-flight mass spectrometry (LDI-ToF-MS) as a technique fit for this purpose is demonstrated. First, a collection of reference spectra of most commonly used organic capping agents, including small molecules and polymers was established. Second, the robustness of the method was tested towards parameters like NP core material and NP size. In a third step, the quantitative capabilities of LDI-ToF-MS were determined. Finally, the potential to detect chemical alterations of the organic capping agent was evaluated. LDI-ToF-MS is able to detect capping agents ranging from small molecules (citric acid, tannic acid, lipoic acid) to large polymers (polyvinylpyrrolidone, branched polyethylenimine and methoxy polyethylene glycol sulfhydryl) on Au and Ag NPs based on characteristic signals for each capping agent. Small molecules showed characteristic fragment ions with low intensities, whereas polymers showed intense signals of the monomeric subunit. The NP concentration range comprises about two orders of magnitude with lowest detection limits of 5 mg/L or a capping agent concentration in the lower nM range. Changes in capping agent composition are detectable at NP concentrations in the g/L range. Thus, LDI-ToF-MS is particularly suitable for characterisation of polymer-capped NPs with high NP concentrations. This may be the case for quality control as part of the material synthesis and testing.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.