Abstract

Bisphenol A is a plastic component, which shows endocrine activity that is detrimental to humans and aquatic ecosystems. The elimination of BPA from the environment is one of the solutions for BPA contaminant management. Adsorption is a cost-effective, easy-to-use method generating low harmful byproducts; nevertheless, contaminant sorbent treatment is a challenge that still needs to be addressed. Fungal fruiting bodies biomass is rarely studied sorbent but is promising due to its high polysaccharide content and availability. Our preliminary studies showed BPA sorption (100 mg/L) by 50 cultivated and wild fungi. The cultivated species: Clitocybe maxima (82%), Pholiota nameko (77%), and Pleurotus columbinus (74%), and wild fungi Cantharellus cibarius (75%) and Lactarius deliciosus (72%) were the most efficient. The biomass was able to sorb BPA over a broad range of temperature and pH levels, with an optimum at 20 °C and pH 7. Although saturation of sorbents was rapid, the regeneration process using ethanol was effective and allowed to recover up to 75% of sorbents’ initial efficiency. A single use of 1 g of sorbent would allow the treatment of 8.86 to 10.1 m3 of wastewater effluent, 16.5 to 18.7 m3 of surface water, and 411 to 469 m3 of drinking water, assuming the concentrations of BPA reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.