Abstract

Glasses activated with europium show promising potential for use in applications relating to photonics, in particular solid-state laser generation. In the current work, Eu2O3 incorporated gemanium borate glasses were developed and explored their potentiality towards lasing active medium by probing physical, structural, optical and lasing properties in detail. The physical and structural features of each glass indicated the presence of non-bridging oxygens (NBOs) and an enhancement in network stability on account of the inclusion of europium ions into the GeO2 glass network. Optical energy band gaps, Ed, Eo, no, So, and λo values were obtained by absorption spectra and found to be increased with europium content. The sequence of Judd-Ofelt (JO) intensity parameters (Ω2, Ω4, and Ω6) exhibited the trend Ω2 > Ω4 > Ω6, and it confirmed the covalent nature of the as-developed glasses. 1 mol% Eu2O3 doped glasses exhibited the highest photoluminescence, quantum efficiency and fluorescence intensity ratio (R). The decay profiles showed single exponential nature for 5D0 state of Eu3+ ions and their lifetime values were calculated. The results amply demonstrated the viability of the manufactured glasses as a potential solid-state active laser medium, with the CIE diagram confirming the intense red color emission as seen from the PL spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call