Abstract

INTRODUCTION: Parkinson's Disease (PD) is a progressive neurological disorder affecting a significant portion of the global population, leading to profound impacts on daily life and imposing substantial burdens on healthcare systems. Early identification and precise classification are crucial for effectively managing this disease. This research investigates the potential of deep learning techniques in facilitating early recognition and accurate classification of PD.
 OBJECTIVES: The primary objective of this study is to leverage advanced deep learning techniques for the early detection and precise classification of Parkinson's Disease. By utilizing a rich dataset comprising speech signal features extracted from 3000 PD patients, including Time Frequency Features, Mel Frequency Cepstral Coefficients (MFCCs), Wavelet Transform based Features, Vocal Fold Features, and TWQT features, this research aims to evaluate the performance of various deep learning models in PD classification.
 METHODS: The dataset containing diverse speech signal features from PD patients' recordings serves as the foundation for training and evaluating five different deep learning models: ResNet50, VGG16, Inception v2, AlexNet, and VGG19. Each model undergoes training and assessment to determine its capability in accurately classifying PD patients. Performance metrics such as accuracy are employed to evaluate the models' effectiveness.
 RESULTS: The results demonstrate promising potential, with overall accuracies ranging from 89% to 95% across the different deep learning models. Notably, AlexNet emerges as the top-performing model, achieving an accuracy of 95% and demonstrating balanced performance in accurately identifying both true and false PD cases.
 CONCLUSION: This research highlights the significant potential of deep learning in facilitating the early detection and classification of Parkinson's Disease. Leveraging speech signal features offers a non-invasive and cost-effective approach to PD assessment. The findings contribute to the growing body of evidence supporting the integration of artificial intelligence in healthcare, particularly in the realm of neurodegenerative disorders. Further exploration into the application of deep learning in this domain holds promise for advancing PD diagnosis and management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.