Abstract

This in-depth study looks into how artificial intelligence (AI) could be used to make formulation development easier in fluidized bed processes (FBP). FBP is complex and involves numerous variables, making optimization challenging. Various AI techniques have addressed this challenge, including machine learning, neural networks, genetic algorithms, and fuzzy logic. By integrating AI with experimental design, process modeling, and optimization strategies, intelligent systems for FBP can be developed. The advantages of AI in this context include improved process understanding, reduced time and cost, enhanced product quality, and robust formulation optimization. However, data availability, model interpretability, and regulatory compliance challenges must be addressed. Case studies demonstrate successful applications of AI in decision-making, process outcome prediction, and scale-up. AI can improve efficiency, quality, and cost-effectiveness in significant ways. Still, it is important to think carefully about data quality, how easy it is to understand, and how to follow the rules. Future research should focus on fully harnessing the potential of AI to advance formulation development in FBP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.