Abstract
Cisplatin is a chemotherapeutic drug commonly used for treating different types of cancer. However, long-term use can lead to side effects, including anorexia, nausea, vomiting, and weight loss, which negatively affect the patient's quality of life and ability to undergo chemotherapy. This study aimed to investigate the mechanisms underlying the development of a negative energy balance during cisplatin treatment. Mice treated with cisplatin exhibit reduced food intake, body weight, and energy expenditure. We observed altered neuronal activity in the hypothalamic nuclei involved in the regulation of energy metabolism in cisplatin-treated mice. In addition, we observed activation of microglia and inflammation in the hypothalamus following treatment with cisplatin. Consistent with this finding, inhibition of microglial activation effectively rescued cisplatin-induced anorexia and body weight loss. The present study identified the role of hypothalamic neurons and inflammation linked to microglial activation in the anorexia and body weight loss observed during cisplatin treatment. These findings provide insight into the mechanisms underlying the development of metabolic abnormalities during cisplatin treatment and suggest new strategies for managing these side effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemico-Biological Interactions
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.