Abstract

Developing highly efficient anode materials for Na batteries with large capacity and also high stability and mobility is a great desire. In this paper, using the first-principle calculations, we explored the feasibility of using zigzag WS2 nanoribbon as rechargeable sodium-ion battery anode electrode. We also have investigated the electronic structure and charge transfer properties. The calculated voltage was suitable for the anode application. The theoretical specific capacities can reach up to 315.46 mAh g−1, compared to the values of 372 mAh g−1 for graphite and 273.52 mAh g−1 for WS2 nanolayer. The activation barrier of WS2 nanoribbon is only 0.12 eV, higher than the 0.07 eV of the WS2 nanolayer. Our calculations suggest that zigzag WS2 nanoribbons can serve as a promising high-capacity Na ion battery anode and provide proper insight into exploring high-capacity 2D nanoribbons for potential battery applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call