Abstract

Can aluminum generate deformation twins? Contradictories exist among the experimental results, theoretical predictions, and molecular dynamics simulations. Our first-principles calculations based on the full-potential linearly augmented plane wave method show that the bonding electron density of aluminum gathers at the tetrahedral interstices, and this specific electronic structure is in agreement with the experimental data from quantitative convergent-beam electron diffraction. In terms of this characteristic, the matching between the cohesive energy of local deformation twins with different thickness and global matrix can shed light on deformation twins in aluminum. This study may give a lane to insight into deformation twins in different metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.