Abstract
Negative-phase North Atlantic Oscillation (NAO) events are generally stronger than positive-phase ones, i.e., there is a phase-strength asymmetry of the NAO. In this work, we explore this asymmetry of the NAO using the conditional nonlinear optimal perturbation (CNOP) method with a three-level global quasi-geostrophic spectral model. It is shown that, with winter climatological flow forcing, the CNOP method identifies the perturbations triggering the strongest NAO event under a given initial constraint. Meanwhile, the phase-strength asymmetry characteristics of the NAO can be revealed. By comparing with linear results, we find that the process of perturbation self-interaction promotes the onset of negative NAO events, which is much stronger than during positive NAO onset. Results are obtained separately using the climatological and zonal-mean flows in boreal winter (December–February) 1979–2006 as the initial basic state. We conclude, based on the fact that NAO onset is a nonlinear initial-value problem, that phase-strength asymmetry is an intrinsic characteristic of the NAO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.