Abstract

Histidine-containing polymers show promise in their transport of nucleic acids in vitro and in vivo. In addition to the pH-buffering histidine component, the polymer often contains a protonated component at physiological pH, such as lysine. These polyplexes usually accumulate in the tumor by enhanced permeability and retention, which has proved disappointing in clinical trials. We presently compare two histidine-lysine (HK) peptide polyplexes for their neuropilin-1-mediated transport of plasmids in vivo. While the polymerized HK (H2KC-48) polyplex was markedly better than the monomeric HK (H2K) polyplex in vitro, both HK polyplexes were effective in transfecting tumor xenografts over a wide range of peptide and plasmid ratios. Nevertheless, polyplexes of low peptide/DNA ratios gave higher tumor transfection and specificity than those of higher ratios. Surprisingly, there was minimal to no gel retardation of polyplexes made from these low ratios during electrophoresis. These results demonstrate that loosely packed HK polyplexes effectively transfected tumors in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.