Abstract

Crop planting provided foods, generated incomes, and consumed water resources to different extents under different spatiotemporal agroclimatic conditions. For balancing three aspects, targeting the rice, maize, wheat, and sorghum planted in Liaoning during the recent two decades, we established an integrated research framework consisting of water footprint (WF) accounting, clustering analysis, and fuzzy optimization programming to quantify the temporal trends and spatial distribution of water footprints, and optimized the planting structure under the different spatiotemporal agroclimatic conditions. Results showed that the maximum water footprint differences were 4166.73 m3/t and 4790.71 m3/t in spatial distribution and temporal series, respectively. Based on precipitation, we established 12 agroclimatic scenarios according to K-Means clustering. The fuzzy optimization result indicated that the planting area percent ranges of maize, wheat, rice, and sorghum in Liaoning province were 4.96%–98.62%, 0.00%–8.55%, 0.00%–18.18%, and 0.00%–95.04%, respectively under the different spatiotemporal conditions. This study's methods and results help make targeted decisions related to grain planting structure while considering the complex spatial-temporal conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.