Abstract

In recent years, researchers have shifted their focus towards investigating the redox properties of ancillary ligand backbones for small-molecule activation. Several metal complexes have been reported for the electrocatalytic H2 evolution reaction (HER), providing valuable mechanistic insights. This process involves efficient coupling of electrons and protons. Redox-active ligands stipulate internal electron transfer and promote effective orbital overlap between metal and ligand, thereby, enabling efficient proton-coupled electron transfer reactions. Understanding such catalytic mechanisms requires thorough spectroscopic and computational analyses. Herein, we summarize recent examples of molecular electrocatalysts based on 3d transition metals that have significantly influenced mechanistic pathways, thus, emphasizing the multifaceted role of metal-ligand cooperativity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call