Abstract
BackgroundLong non-coding RNAs (lncRNAs) are implicated in a variety of regulatory functions within tumors, yet their specific roles in glioma remain underexplored. MethodsWe extracted glioma patient data from The Cancer Genome Atlas and UCSC Xena database for analysis using R, focusing on genomic characterization, biological enrichment, immune evaluation, and the development of a predictive model employing machine learning techniques. Additionally, we conducted cell culture and proliferation assays. ResultsOur analysis revealed that the lncRNA SLC16A1-AS1 plays a pivotal role in glioma pathogenesis and prognosis. We observed that abnormal expression of SLC16A1-AS1 varied with tumor grade, IDH mutation status, and histological type, correlating with worse survival outcomes. Genomically, SLC16A1-AS1 was associated with Tumor Mutational Burden and other prognostic biomarkers. The expression of this lncRNA was also linked to the activation of critical biological pathways and appeared to modulate the immune microenvironment, enhancing the presence of immune cells and checkpoints, which may be predictive of immunotherapy outcomes. Our predictive model, constructed from genes associated with SLC16A1-AS1, accurately forecasted glioma prognosis, strongly correlating with survival and treatment responses. In vitro experiments further demonstrated that SLC16A1-AS1 significantly influences glioma cell proliferation, invasion, and migration, underscoring its role in tumor aggression and its potential as a therapeutic target. ConclusionsThis study underscores the significant influence of SLC16A1-AS1 on glioma progression and prognosis, with its expression correlating with tumor traits and immune responses. The findings highlight the potential of targeting SLC16A1-AS1 in therapeutic strategies aimed at mitigating glioma aggressiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.