Abstract
In this study, we clarify the liquid structure formed at the interface between LiCoO2 (LCO), the cathode material of Li-ion batteries, and propylene carbonate (PC), which is used as a solvent in the electrolyte, on a molecular scale. We apply sparse modeling-based modal analysis to force spectroscopy data measured by frequency modulation atomic force microscopy (FM-AFM) and show that each component in the FM-AFM force curve, such as oscillatory solvation force, background, and noise, can be automatically decomposed. Moreover, by combining detailed force curve analysis with solid/liquid interface simulations based on first-principles calculation, we have identified that there are distinct damped vibrational modes in the force curves at the LCO/PC interface with a period of about 0.57 nm and those with shorter periods, which likely correspond to the solvation forces associated with bulk-state PC molecules and those with PC molecules in "lying down" orientations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.