Abstract

Molecular research on large-cell neuroendocrine carcinoma (LCNEC) and small-cell lung cancer (SCLC) has progressed significantly. However, there are still fewer molecular markers related to prognostic/therapeutic strategies for these conditions compared to those for adenocarcinoma. We therefore investigated the molecular characteristics of neuroendocrine carcinomas (NECs). We enrolled patients surgically diagnosed with NECs between 2011 and 2019, with complete follow-up records. All were analyzed using whole exome sequencing and p53/Rb immunohistochemistry (IHC). A total of 92 cases, comprising 45 pure SCLC, 15 combined SCLC, 27 pure LCNEC, and 5 combined LCNEC, were included. TP53 (78.3%) and RB1 (34.8%) were the most common molecular alterations, followed by KMT2D, LRP1B, FAT3, NCOR2, SPTA1, and NOTCH1. The mutation frequency for EGFR was 10.9%. Sixteen patients with LCNEC who had TP53/RB1 co-alterations were SCLC-like, while the remaining were NSCLC-like. There was no statistically significant difference between the groups regarding overall survival (OS; p=0.458) and progression-free survival (PFS; p=0.157). The frequency of the loss of Rb expression by IHC in SCLC-like LCNEC was 100%. Significant pathway alterations unique to SCLC included Notch and AMPK, while HIF-1 was enriched exclusively in LCNEC. NCOR2 mutation was linked to worse OS (p=0.029) and PFS (p=0.015), while wild-type SPTA1 was associated with poor PFS (p=0.018). IHC for Rb was reliable for predicting LCNEC molecular subtypes, indicating its clinical value. NCOR2 and SPTA1 alterations were identified as prognostic factors that may provide therapeutic targets for patients with NEC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call