Abstract
We apply the contour deformation trick to the Thermodynamic Bethe Ansatz equations for the AdS_5 \times S^5 mirror model, and obtain the integral equations determining the energy of two-particle excited states dual to N=4 SYM operators from the sl(2) sector. We show that each state/operator is described by its own set of TBA equations. Moreover, we provide evidence that for each state there are infinitely-many critical values of 't Hooft coupling constant \lambda, and the excited states integral equations have to be modified each time one crosses one of those. In particular, estimation based on the large L asymptotic solution gives \lambda \approx 774 for the first critical value corresponding to the Konishi operator. Our results indicate that the related calculations and conclusions of Gromov, Kazakov and Vieira should be interpreted with caution. The phenomenon we discuss might potentially explain the mismatch between their recent computation of the scaling dimension of the Konishi operator and the one done by Roiban and Tseytlin by using the string theory sigma model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.