Abstract
We introduce a microstructure dataset focusing on complex, hierarchical structures found in a single Ultrahigh carbon steel under a range of heat treatments. Applying image representations from contemporary computer vision research to these microstructures, we discuss how both supervised and unsupervised machine learning techniques can be used to yield insight into microstructural trends and their relationship to processing conditions. We evaluate and compare keypoint-based and convolutional neural network representations by classifying microstructures according to their primary microconstituent, and by classifying a subset of the microstructures according to the annealing conditions that generated them. Using t-SNE, a nonlinear dimensionality reduction and visualization technique, we demonstrate graphical methods of exploring microstructure and processing datasets, and for understanding and interpreting high-dimensional microstructure representations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.