Abstract
Recently an effective membrane theory valid in a “hydrodynamic limit” was proposed to describe entanglement dynamics of chaotic systems based on results in random quantum circuits and holographic gauge theories. In this paper, we show that this theory is robust under a large set of generalizations. In generic quench protocols we find that the membrane couples geometrically to hydrodynamics, joining quenches are captured by branes in the effective theory, and the entanglement of time evolved local operators can be computed by probing a time fold geometry with the membrane. We also demonstrate that the structure of the effective theory does not change under finite coupling corrections holographically dual to higher derivative gravity and that subleading orders in the hydrodynamic expansion can be incorporated by including higher derivative terms in the effective theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.