Abstract

Inoculation with microorganisms is an effective strategy for improving traditional composting processes. This study explored the effects of inoculation with lignocellulose-degrading microorganisms (LDM) on the degradation of organic matter (OM), methane (CH4) emissions, and the microbial community (bacteria and methanogens) during composting. The results showed that LDM accelerated the degradation of OM (including the lignocellulose fraction) and increased the CH4 releases in the later thermophilic and cooling stages during composting. At the ending of composting, LDM increased the CH4 emissions by 38.6% compared with the control. Moreover, LDM significantly increased the abundances of members of the bacterial and methanogenic community during the later thermophilic period (P < 0.05). In addition, LDM promoted the growth and activity of major bacterial genera (e.g., Ureibacillus) with the ability to degrade macromolecular OM, as well as affecting key methanogens (e.g., Methanocorpusculum) in the composting system. Network analysis and variance partitioning analysis indicated that OM and temperature were the main factors that affected the bacterial and methanogen community structures. Structural equation modeling demonstrated that the higher CH4 emissions under LDM were related to the growth of methanogens, which was facilitated by the anaerobic environment produced by large amounts of CO2. Thus, aerobic conditions should be improved during the end of the thermophilic and cooling composting period when inoculating with lignocellulose-degrading microorganisms in order to reduce CH4 emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.