Abstract

Abstract Additive Manufacturing (AM) is a technology capable of producing designs that challenge those from traditional manufacturing methods. AM is of high interest for advanced capabilities such as leveraging free complexity and having the ability to manufacture multi-part products that are manufactured as a single assembled. By leveraging design heuristics for AM, the final design can be manufactured in a shorter timeframe with less material consumption while still maintaining the initial engineering goals of the design. Despite the promising potential of AM, there is a growing concern that designers are not utilizing the design heuristics that embody successful AM. When designers resort to using design heuristics for Traditional Manufacturing (TM) with the unintentional purpose of translating these heuristics to AM, they are not creating efficient designs for AM and are unable to reap the benefits of using AM. To remedy this problem, intervening early in the design process can help address any concerns regarding the use of AM design heuristics. This work explores the design heuristics that students use in creating designs in the context of TM and AM. Once the common design heuristics students use in their designs are identified, future studies will further investigate the specific features that these students are using to address them through early interventions. This work found that incorporating complex shapes and geometries and considering the minimum feature size are significant axioms for influencing the manufacturability of a design for both TM and AM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call