Abstract

Using interfacial force microscopy and a spherical glass probe, we investigate the adhesive and mechanical properties of the so-called liquid-like layer (L-LL) on the surface of ice at various temperatures over the range from -10 to -30 degrees C. We find that the layer thickness closely follows that predicted on thermodynamic grounds, while the adhesive interaction has the behavior of a "frustrated capillary", strongly suggesting that the layer is viscoelastic. This viscoelasticity is directly probed using a lateral-dither technique to obtain information on the layer's viscous response as a function of both temperature and interfacial separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.