Abstract
Previous studies have shown that galaxies with minor companions exhibit an elevated star formation rate. We reverse this inquiry, constructing a volume-limited sample of \simL\star (Mr \leq -19.5 + 5 log h) galaxies from the Sloan Digital Sky Survey that are isolated with respect to other luminous galaxies. Cosmological simulations suggest that 99.8% of these galaxies are alone in their dark matter haloes with respect to other luminous galaxies. We search the area around these galaxies for photometric companions. Matching strongly star forming (EW(H{\alpha})\geq 35 \AA) and quiescent (EW(H{\alpha})< 35 \AA) samples for stellar mass and redshift using a Monte Carlo resampling technique, we demonstrate that rapidly star-forming galaxies are more likely to have photometric companions than other galaxies. The effect is relatively small; about 11% of quiescent, isolated galaxies have minor photometric companions at radii \leq 60 kpc h$^{-1}$ kpc while about 16% of strongly star-forming ones do. Though small, the cumulative difference in satellite counts between strongly star-forming and quiescent galaxies is highly statistically significant (PKS = 1.350 \times10$^{-3}$) out to to radii of \sim 100 h$^{-1}$ kpc. We discuss explanations for this excess, including the possibility that \sim 5% of strongly star-forming galaxies have star formation that is causally related to the presence of a minor companion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.