Abstract
Atherosclerosis, a chronic inflammatory disease impacting arteries, is closely linked to cardiovascular conditions. Dyslipidemia, marked by high low-density lipoprotein (LDL), low high-density lipoprotein (HDL), and increased plasma triglycerides, is a key risk factor. Atherogenesis begins when modified lipoproteins like oxidized LDL (ox-LDL) activate the immune system. This study explores the roles of T-regulatory cells (Tregs) and interleukins 10 (IL-10), 6 (IL-6), and 17 (IL-17) in atherogenesis. Samples were collected from the Hospital patients with stable angina pectoris (SAP). Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll density gradient and analyzed via flow cytometry. IL-10, IL-6, and IL-17 levels in cell culture supernatant were measured using ELISA. Data were expressed as mean ± SEM and analyzed with statistical software. Results indicate that only patients exhibited reduced Treg and IL-10 levels after high-dose ox-LDL treatment. Significant IL-6 reduction was observed in both NCA and SA groups after high-dose n-LDL and low/high ox-LDL treatments compared to untreated PBMCs. Future research will explore n-LDL and ox-LDL effects on Th17/Treg immune responses within a specific cytokine environment known for inducing inflammation, assessing their potential role in atherosclerosis progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.