Abstract

Despite being the most accurate class of density functional approximations for the main-group chemistry, doubly hybrid approximations (DHAs) are generally considered to be incomplete in describing the medium- to long-range dispersive interactions. The existing DHAs are often supplemented with empirical long-range dispersion corrections. By using the extensive and chemically diverse GMTKN55 database, we explore the limits of the XYG3-type DHAs using the B3LYP reference orbitals, namely, xDH@B3LYP, with a gradually relaxed constraint on the mixing parameters of DHAs. Our results demonstrate that the xDH@B3LYP model can provide a balanced description of both covalent and noncovalent interactions with the accuracy and robustness comparable to or even better than the very expensive composite methods in wave function theory. Such an accuracy can be achieved without resorting to the use of any long-range correction scheme, shedding new light on the development of DHAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.