Abstract

Very recently it has been predicted that the far-field radiative heat transfer between two macroscopic systems can largely overcome the limit set by Planck’s law if one of their dimensions becomes much smaller than the thermal wavelength (λTh ≈ 10 μm at room temperature). To explore the ultimate limit of the far-field violation of Planck’s law, here we present a theoretical study of the radiative heat transfer between two-dimensional (2D) materials. We show that the far-field thermal radiation exchanged by two coplanar systems with a one-atom-thick geometrical cross section can be more than 7 orders of magnitude larger than the theoretical limit set by Planck’s law for blackbodies and can be comparable to the heat transfer of two parallel sheets at the same distance. In particular, we illustrate this phenomenon with different materials such as graphene, where the radiation can also be tuned by a external gate, and single-layer black phosphorus. In both cases the far-field radiative heat transfer is domina...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.