Abstract

In [K. Kobzar, T.E. Skinner, N. Khaneja, S.J. Glaser, B. Luy, Exploring the limits of broadband excitation and inversion, J. Magn. Reson. 170 (2004) 236–243], optimal control theory was employed in a systematic study to establish physical limits for the minimum rf-amplitudes required in broadband excitation and inversion pulses. In a number of cases, however, experimental schemes are not limited by rf-amplitudes, but by the overall rf-power applied to a sample. We therefore conducted a second systematic study of excitation and inversion pulses of varying pulse durations with respect to bandwidth and rf-tolerances, but this time using a modified algorithm involving restricted rf-power. The resulting pulses display a variety of pulse shapes with highly modulated rf-amplitudes and generally show better performance than corresponding pulses with identical pulse length and rf-power, but limited rf-amplitude. A detailed description of pulse shapes and their performance is given for the so-called power-BEBOP and power-BIBOP pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.