Abstract

The plasma membrane (NCX) and mitochondrial (NCLX) Na+/Ca2+ exchangers are structurally related proteins, although they operate under strictly different ionic conditions and membrane potentials. In contrast with NCX, NCLX can transport either Li+ or Na+ in exchange for Ca2+. Whereas the crystal structure of the archaeal NCX (NCX_Mj) describes the binding sites for alternative binding of 3Na+ or 1Ca2+, these features remain elusive for NCLX due to the lack of structural information. To elucidate the ion-binding features of mitochondrial NCLX, we analyzed here the Li+-transporting NCLX_Mj mutant, produced by replacing the ion-coordinating residues in the archaeal NCX (NCX_Mj) to match the ion-coordinating residues of human NCLX. The NCLX_Mj-mediated Na+/Ca2+ or Li+/Ca2+ exchange rates are insensitive to varying voltage, consistent with an electroneutral ion exchange. Molecular dynamics (MD) simulations revealed that NCLX_Mj contains two novel Li+ binding sites with four ion-coordinating residues, derived from the three Na+ binding sites of NCX_Mj. The ion-coordination modes, observed in the MD simulations, were further supported by two-dimensional infrared (2D IR) spectroscopy and by testing the mutational effects on the ion fluxes. Collectively, our results revealed a structural basis for Li+ binding and electroneutral transport (2Na+/Li+:1Ca2+) by NCLX_Mj, meaning that the NCLX-mediated electroneutral transport may predefine mitochondrial Ca2+ and Na+ signaling to modulate cellular functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.