Abstract
AbstractMitochondria are crucial sites for protein quality control within cells. When mitochondrial stress is triggered by protein misfolding, it can accelerate abnormal protein aggregation, potentially inducing various diseases. This study developed a cascade‐responsive sensor, named AggHX, to monitor the microenvironment of protein aggregation induced by zinc (II) ions and the accompanying mitochondrial dysfunction. The AggHX consists of two key components: (1) A Zn2+ recognition group for triggering a fluorescent enhance response, and (2) a near‐infrared BODIPY scaffold that detects viscosity changes in cell aggregation via HaloTag. This sensor's mechanism of action is elucidated through photochemical and biochemical characterizations. To further investigate the relationship between protein aggregation and mitochondrial homeostasis, we employ fluorescence lifetime imaging microscopy to assess viscosity changes in protein aggregates under intracellular Zn2+ stress. This research provides insights into the dynamic behavior and spatial distribution of protein aggregates and mitochondria, contributing to a deeper understanding of their physiological roles in cellular processes and potential implications in disease pathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.