Abstract
Polyhedra with icosahedral symmetry and vertices labelled by rational indices of points of a six-dimensional lattice left invariant by the icosahedral group allow a morphological characterization of icosahedral viruses which includes the Caspar–Klug classification as a special case. Scaling transformations relating the indexed polyhedron enclosing the surface with the one delimiting the central cavity lead to models of viral capsids observed in nature. Similar scaling relations can be obtained from projected images in three dimensions of higher-dimensional crystallographic point groups having the icosahedral group as a subgroup. This crystallographic approach can be extended to axial-symmetric clusters of coat proteins around icosahedral axes of the capsid. One then gets enclosing forms with vertices at points of lattices left invariant by the corresponding point group and having additional crystallographic properties also observed in natural crystals, but not explained by the known crystallographic laws.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Mathematical Methods in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.