Abstract

Direct monitoring of dendrite growth, hydrogen evolution, and surface passivation can enrich the chemical and morphological understanding of the unstable Zn/electrolyte interface and provide guidelines for rational design of Zn anodes; however, the on-line observation with high precision is hitherto lacking. Herein, we present a real-time comprehensive characterization system, including in situ atomic force microscopy, optical microscopy, and electrochemical quartz crystal microbalance (referred to as the "3M" system), to provide multiscale views on the semisphere nuclei and growth of bump-like dendrites and the potential-dependent chemical and morphological structures of passivated products in a mild acidic electrolyte. It is revealed that the poor interfacial properties can be attributed to the sparse nucleation sites and direct contact of Zn with the electrolyte. The 3M system further visualizes and confirms that the additive polyethylene glycol acts as a Zn2+ distribution promoter and physical barrier and merits stable electrochemical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.