Abstract

The objective of this article is to review the historical development of rice–aquatic species (RASp) integration and analyze the factors that affect its performance. Compared to rice monoculture, the integration of the rice–aquatic species system has a more significant impact on farm production, income, land (L), water use efficiency (WUE), net revenue, and labor use efficiency (LBUE) reduction. Although concurrent and alternate cultivations of rice–aquatic species increase unit water efficiency, concurrent cultivation requires 26% more water than monoculture. Furthermore, RASp farming promotes environmentally-friendly rice cultivation by reducing the use of pesticides (insecticides and herbicides), decreasing CH4 emissions by approximately 14.8–22.1%, and enhancing water quality. These findings suggest that fish integration in rice fields could be integrated into extensive aquaculture. Finally, global cooperation is necessary to transfer knowledge about this technology, particularly from China, and more research is needed to evaluate the effects of rice–aquatic species integration in the context of climate change and practical water use efficiency. Additionally, a robust development program at the national and global levels, with regulatory and non-administrative bodies’ guidance and strategy, is needed to embrace the expansion of the rice–aquatic species practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call