Abstract
Abstract This paper uses big data technology to focus on the clustering and correlation analysis of students’ daily behavior. The daily management workflow of students is constructed by analyzing the main algorithms of big data technology and the application scope. The association degree rules are combined to calculate students’ associated behaviors’ minimum support and confidence degree. The clustering algorithm was used to classify the daily management patterns of students into learning, closed, and active types. The student daily management clustering process was improved by using Newton interpolation to improve the inheritance and compatibility of node changes. In the correlation analysis, the support of the association label for regular type 1 was 0.441 in support and 0.852 in confidence, and the support of more regular type 2 was 0.425 in support and 0.846 in confidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.