Abstract

We have demonstrated the production of high-density surface oxygen vacancy (ovs) in BiVO4 (BVO) photoanodes through the post-treatment of an atmospheric pressure plasma jet (APPJ). The 3.4-fold enhancement of photocurrent density of BVO photoanodes at 1.23 VRHE for photoelectrochemical (PEC) water oxidation due to 95 % of charge transfer efficiency at the BVO/electrolyte interface. In-situ transient absorption spectroscopy investigations provided insights into the charge carrier dynamics of the APPJ-treated BVO photoanode, revealing that abundant electrons could effectively be trapped in the ovs states to prevent charge carrier recombination. NiOOH/FeOOH oxygen evolution co-catalyst was further decorated on the APPJ-treated BVO photoanode resulted in a remarkable photocurrent density of 3.6 mA/cm2 at 1.23 VRHE, an anodic bias photon-to-current efficiency of 1.4 % at 0.62 VRHE, and a faradaic efficiency over 90 % in PEC water splitting. Our study provides important and novel insights into the surface vacancy engineering of metal oxides for green hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call