Abstract

The current research delves into assessing the impact of applied potential, ammonium fluoride concentration, and anodization duration on the structural, phase compositional, microhardness, and surface roughness attributes of nanotubular titanium oxide coatings on anodized Ti-6Al-4V ELI. A meticulous experimental design was executed to systematically investigate the varied effects of these factors. Scanning electron microscopy (SEM) unveiled the presence of well-defined titania nanotubes on the surfaces of the anodized specimens. X-ray diffraction (XRD) analysis discerned the composition of the nanotubular oxide layer, revealing the presence of both anatase and a mixture of anatase and rutile phases contingent upon the anodization parameters. Notably, surface microhardness, surface roughness, and corrosion resistance manifested noticeable variations in response to alterations in applied voltage, NH4F concentration, and anodization duration within the designated experimental ranges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.