Abstract

Embodied learning defines a contemporary pedagogical theory focusing on ensuring an interactive learning experience through full-body movement. Within this pedagogy, several studies in Human-Computer Interaction have been conducted, incorporating gestures, and physical interaction in different learning fields. This paper presents the design of a multimodal and adaptive space for embodied learning. The main aim is to give students the possibility to use gestures, body movement, and tangible interaction while interacting with adaptive learning content projected on the wall and the floor. Thus, this study aims to explore how tangible interaction, as a form of implementing embodied learning, can impact the motivation of students to learn compared to tablet-based learning. Eighteen primary school students aged nine and ten years old participated in the study. The average percentages of answers on the Questionnaire on Current Motivation (QCM) pointed out a higher motivation among students learning via tangible objects. Results revealed a positive score for the Interest of learning abstract concepts using a tangible approach with a mean score of 4.78, compared to 3.77 while learning via a tablet. Furthermore, Success and Challenge measures, with a mean score of 4.67 and 4.56 indicate that physical interaction via tangible objects leads to significantly higher motivation outcomes. These findings suggest that learning might benefit more from a multimodal and tangible physical interaction approach than the traditional tablet-based learning process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call