Abstract

Helicobacter pylori (H. pylori) is known to colonize gastric mucosa, induce inflammation, and alter gastric microbiota resulting in a spectrum of gastric diseases. Likewise, changes in gut microbiota have recently been linked with various metabolic and inflammatory diseases. While extensive number of studies were published examining the relationship between H. pylori and gastric microbiota, little is known about the impact of H. pylori on downstream gut microbiota. In this study, we performed 16 S rRNA and ITS2-based microbial profiling analysis of 60 stool samples from adult individuals. Remarkably, the gut microbiota of H. pylori infected individuals was shown to be increased of members belonging to Succinivibrio, Coriobacteriaceae, Enterococcaceae, and Rikenellaceae. Moreover, gut microbiota of H. pylori infected individuals was shown to have increased abundance of Candida glabrata and other unclassified Fungi. These results links possible role for H. pylori-associated changes in the gut microbiota in intestinal mucosal barrier disruption and early stage colorectal carcinoma deployment. Altogether, the identified differences in bacterial and fungal composition provides important information that may eventually lead to the development of novel biomarkers and more effective management strategies.

Highlights

  • Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that colonizes the gastric mucosa of more than half of the worldwide population with high geographic variability [1]

  • Several factors affects the outcome of H. pylori infection, including virulence properties such as sialic acid-binding adhesin (SabA), vacuolating cytotoxin (VacA), and cytotoxin-associated gene A (CagA) [6, 7]

  • Stool samples from the 60 individuals enrolled in this study were obtained in order to assess the microbiota composition and H. pylori infection

Read more

Summary

Introduction

Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that colonizes the gastric mucosa of more than half of the worldwide population with high geographic variability [1]. Studies have suggested that gut microbiota can be affected by H. pylori infection [8, 9].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call