Abstract

Background3D-printed boluses in radiation therapy receive consideration for their ability to enhance treatment precision and patient comfort. Yet, thorough validation of 3D-printed boluses using various validation procedures and statistical analysis is missing. This study aims to determine the effectiveness of using 3D-printed boluses in radiation therapy. MethodThe CT Hounsfield Unit (HU) profiles of the 3D-printed materials were compared to those of the commercial bolus using the Eclipse Treatment Planning System (TPS) unit. Furthermore, absolute dose measurements were carried out to assess the efficacy of the 3D-printed samples by using concordance correlation coefficient to assess the agreement between 3D materials and the commercial bolus. ResultsThe average HU profiles of 3D-printed materials were: −144.53 (ABS), −124.40 (ASA), 9.55 (PLA-P), −140.79 (Polycarbonate), −68.58 (PLA-S), and −113.159 (PET-G), respectively. PDD scans showed that air gaps between the bolus and surface shifted the maximum dose depth. Whereas dosimetry has shown that ASA and Polycarbonate are different in attenuation from other tested filaments. This limitation could affect their performance in specific applications within radiation therapy. The final analysis, using the TPS-generated datasets to assess the area under the dose curve in the build-up zone of each 3D-bolus, excluded ABS. ConclusionsThe results from PDD scans and dose assessments offer compelling proof that 3D-printed boluses are effective for delivering surface dosage and are like commercially available boluses. Moreover, specific materials showed a statistically significant improvement in delivering the dose. The results highlight the capability of 3D-printed boluses to enhance the effectiveness of radiation therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.