Abstract

Among glucocorticoids (GCs), dexamethasone (Dex) is widely used in treatment of multiple myelomas. However, despite a definite benefit, all patients relapse. Moreover, the molecular basis of glucocorticoid efficacy remains elusive. To determine genomic response to Dex in myeloma cells, we generated bulk and single-cell multi-omics data and high-resolution contact maps of active enhancers and target genes. We show that a minority of glucocorticoid receptor-binding sites are associated with enhancer activity gains, increased interaction loops, and transcriptional activity. We identified and characterized a predominant enhancer enriched in cohesin (RAD21) and more accessible upon Dex exposure. Analysis of four gene-specific networks revealed the importance of the CTCF-cohesin couple and the synchronization of regulatory sequence openings for efficient transcription in response to Dex. Notably, these epigenomic changes are associated with cell-to-cell transcriptional heterogeneity, in particular, lineage-specific genes. As consequences, BCL2L11-encoding BIM critical for Dex-induced apoptosis and CXCR4 protective from chemotherapy-induced apoptosis are rather up-regulated in different cells. In summary, our work provides new insights into the molecular mechanisms involved in Dex escape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.