Abstract

Chemical transformations in mixed aerosols alter the particulate physical properties. Nitrates and water soluble dicarboxylic acids, such as malonic acid (MA), are major components of ambient aerosol particles. Various metal ions such as, Na+, Ca2+, Mg2+ also become part of these complex aerosol systems during their atmospheric lifetime. Interactions among the co-existing ionic and molecular species govern the chemical changes in the aerosol particles. In this work, we provide a comparative account of the effect of metal ion identity (Na+, Ca2+, Mg2+) on such chemical changes arising from ion-molecular interactions in NaNO3-MA, Ca(NO3)2-MA and Mg(NO3)2-MA mixed inorganic-organic aerosols. In-situ micro-Raman spectroscopy has enabled us to gain molecular level insight on formation of organic salt and simultaneously estimate nitrate depletion in these mixed aerosols during different stages of their hygroscopic cycle. In addition to the nitrate depletion often reported during the drying phase, this study has brought to light an intriguing observation: depletion of nitrate in the humidification phase as well, a phenomenon that has hitherto remained undocumented. For the mixed systems studied here, the extent of nitrate depletion follows the order Mg-MA (58%) > Ca-MA (43%) > Na-MA (15%). The comparatively huge forward shift in the acid displacement reaction equilibrium for the systems, Ca-MA and Mg-MA is driven by complexation. Our results highlight the profound effect of ion-molecular interactions on the acid displacement reaction equilibria in aerosols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.