Abstract
Radioactivity monitoring in the marine environment exhibits various challenges. First and foremost, the water-induced attenuation substantially limits the detection ability and range of the sensors. Additionally, the harshness and remoteness of underwater locations pose significant obstacles to existing technological solutions towards dense and extended radioactivity mapping of the oceans. The highly ambitious EU FET Proactive Research Programme RAMONES (Radioactivity Monitoring in Ocean Ecosystems) is aiming towards overcoming existing limitations by developing and deploying novel underwater radiation-sensing instruments, enabling direct correlation of marine radioactivity with underwater geological and geochemical processes.The present study will focus on the analysis of experimental data collected during field experiments conducted in the extended hydrothermal vents of Milos, an island located on the south Aegean Sea that is part of the Hellenic Volcanic Arc. The shallow active hydrothermal system of Milos is associated with calc-alkaline volcanic rocks from basaltic andesites to dacites, and rhyolites that have been deposited over several cycles of volcanic activity. Novel portable γ-detectors based on lightweight CdZnTe crystals, were deployed to acquire in situ measurements from coastal locations at the eastern part of the island. Complementary sediment samples were collected to offer baseline NORM (Naturally Occurring Radioactive Material) levels from Milos Island having attracted a lot of attention recently due to its role as a potential geohazards source. These measurements are used to benchmark the γ spectrometers and prepare them for underwater operation aboard autonomous underwater gliders. Collected data will feed a prototype Risk Information System (RIS) titled as POIS2ON (PrOtotype Information System for SOcioecoNomic stakeholders). POIS2ON database will include datasets accompanied by geoinformation to be visualized though NORM levels heat maps, as well as support detailed Monte Carlo simulations to evaluate the radiation doses on local marine ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.