Abstract

ABSTRACT We present the high-mass end of the galaxy stellar mass function using the largest sample to date (5352) of star-forming galaxies with M⋆ > 1011 M⊙ at cosmic noon, 1.5 < z < 3.5. This sample is uniformly selected across 17.2 deg2 (∼0.44 Gpc3 comoving volume from 1.5 < z < 3.5), mitigating the effects of cosmic variance and encompassing a wide range of environments. This area, a factor of 10 larger than previous studies, provides robust statistics at the high-mass end. Using multiwavelength data in the Spitzer/HETDEX Exploratory Large Area (SHELA) footprint, we find that the SHELA footprint star-forming galaxy stellar mass function is steeply declining at the high-mass end probing values as high as ∼10−4 Mpc3 dex−1 and as low as ∼5 × 10−8 Mpc3 dex−1 across a stellar mass range of log(M⋆/M⊙) ∼ 11–12. We compare our empirical star-forming galaxy stellar mass function at the high-mass end to three types of numerical models: hydrodynamical models from IllustrisTNG, abundance matching from the UniverseMachine, and three different semi-analytical models (SAMs; SAG, SAGE, GALACTICUS). At redshifts 1.5 < z < 3.5, we find that results from IllustrisTNG and abundance matching models agree within a factor of ∼2–10, however the three SAMs strongly underestimate (up to a factor of 1000) the number density of massive galaxies. We discuss the implications of these results for our understanding of galaxy evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.