Abstract

Rapidly rotating Rayleigh–Bénard convection is studied using time-resolved particle image velocimetry and three-dimensional particle tracking velocimetry. Approaching the geostrophic regime of rotating convection, where the flow is highly turbulent and at the same time dominated by the Coriolis force, typically requires dedicated setups with either extreme dimensions or troublesome working fluids (e.g., cryogenic helium). In this study, we explore the possibilities of entering the geostrophic regime of rotating convection with classical experimental tools: a table-top conventional convection cell with a height of 0.2 m and water as the working fluid. In order to examine our experimental measurements, we compare the spatial vorticity autocorrelations with the statistics from simulations of geostrophic convection reported earlier in [D. Nieves et al., “Statistical classification of flow morphology in rapidly rotating Rayleigh-Bénard convection,” Phys. Fluids 26, 086602 (2014)]. Our findings show that we have indeed access to the geostrophic convection regime and can observe the signatures of the typical flow features reported in the aforementioned simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.