Abstract
Landslide susceptibility modelling is a crucial tool for implementing effective strategies in landslide risk mitigation. A plethora of statistical methods is available for generating accurate prediction images; however, the reliability of these models in terms of geomorphological adequacy is often overlooked by scholars. This critical flaw may result in concealed prediction errors, undermining the trustworthiness of the obtained maps. A key aspect of evaluating the geomorphological soundness of these models lies in factor analysis, specifically considering the correlation of explanatory variables with the final susceptibility score rather than solely focusing on their impact on model accuracy.This study delves into research conducted in the Bidente river basin (Italy) that analyes results obtained from slide, flow, and complex susceptibility models using Weight of Evidence (WoE) and Multivariate Adaptive Regression Splines (MARS) statistical methods. The research critically examines each factor class's role in defining susceptibility scores for different landslide typologies. The comparison between susceptibility maps generated by WoE and MARS for each typology (slide = 0.78; flow = 0.85; complex: 0.79) (slide = 0.78; flow = 0.85; complex: 0.79)reveals good to excellent prediction skill, with MARS demonstrating a 5 % higher performance index.The study emphasises the importance of spatial relationships between variables and landslide occurrences, highlighting that individual classes of variables influence the final susceptibility score based on their combined role with other predictor classes. In particular, in this study, results highlight that lithotecnical and landform classification classes delimit the landslide domain, while topographic attributes (steepness, curvatures, SPI and TWI) modulate the score inside. The proposed approach offers insights into investigating the geomorphological adequacy of landslide prediction images, emphasising the significance of factor analysis in evaluating model reliability and uncovering potential errors in susceptibility maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.